skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barral, Ana Maria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Plastic pollution is a worldwide phenomenon with concerning effects on the biosphere and particularly on the marine environment. Biodegradation is considered an environmentally friendly alternative to combat the increasing quantities of plastic pollutants where different microbial sources are tested for plastic degradation potential. In this project, a microcosm approach was used as an enrichment method for marine microbes degrading polyethylene. Pieces of low-density polyethylene (LDPE) and highdensity polyethylene (HDPE) previously deployed in ocean water have been explored as a source of microbial biomass. This source plastic was added to a synthetic medium containing sterilized pieces of LDPE and HDPE as the sole carbon source and were incubated for extended periods (32-86 days) in the laboratory to promote growth of microbes that can degrade plastic. Biodegradation of polyethylene was confirmed by dry weight measurements and Fourier Transform Infra-Red (FTIR) spectroscopy. For both LDPE and HDPE a significant reduction in dry weight was observed. FTIR analysisshowed peaks suggesting oxidative changes in polyethylene’s chemical composition. In summary, the microcosm approach can be considered a viable approach for enrichment of plastic-degrading marine microbial populations. 
    more » « less